729 research outputs found

    Adaptive Robust Optimization with Dynamic Uncertainty Sets for Multi-Period Economic Dispatch under Significant Wind

    Full text link
    The exceptional benefits of wind power as an environmentally responsible renewable energy resource have led to an increasing penetration of wind energy in today's power systems. This trend has started to reshape the paradigms of power system operations, as dealing with uncertainty caused by the highly intermittent and uncertain wind power becomes a significant issue. Motivated by this, we present a new framework using adaptive robust optimization for the economic dispatch of power systems with high level of wind penetration. In particular, we propose an adaptive robust optimization model for multi-period economic dispatch, and introduce the concept of dynamic uncertainty sets and methods to construct such sets to model temporal and spatial correlations of uncertainty. We also develop a simulation platform which combines the proposed robust economic dispatch model with statistical prediction tools in a rolling horizon framework. We have conducted extensive computational experiments on this platform using real wind data. The results are promising and demonstrate the benefits of our approach in terms of cost and reliability over existing robust optimization models as well as recent look-ahead dispatch models.Comment: Accepted for publication at IEEE Transactions on Power System

    New Formulation and Strong MISOCP Relaxations for AC Optimal Transmission Switching Problem

    Full text link
    As the modern transmission control and relay technologies evolve, transmission line switching has become an important option in power system operators' toolkits to reduce operational cost and improve system reliability. Most recent research has relied on the DC approximation of the power flow model in the optimal transmission switching problem. However, it is known that DC approximation may lead to inaccurate flow solutions and also overlook stability issues. In this paper, we focus on the optimal transmission switching problem with the full AC power flow model, abbreviated as AC OTS. We propose a new exact formulation for AC OTS and its mixed-integer second-order conic programming (MISOCP) relaxation. We improve this relaxation via several types of strong valid inequalities inspired by the recent development for the closely related AC Optimal Power Flow (AC OPF) problem. We also propose a practical algorithm to obtain high quality feasible solutions for the AC OTS problem. Extensive computational experiments show that the proposed formulation and algorithms efficiently solve IEEE standard and congested instances and lead to significant cost benefits with provably tight bounds

    Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem

    Full text link
    Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major computational challenge to today's power industry for the real-time operation of large-scale power grids. In this paper, we propose a new technique for reformulation of the rank constraints using both principal and non-principal 2-by-2 minors of the involved Hermitian matrix variable and characterize all such minors into three types. We show the equivalence of these minor constraints to the physical constraints of voltage angle differences summing to zero over three- and four-cycles in the power network. We study second-order conic programming (SOCP) relaxations of this minor reformulation and propose strong cutting planes, convex envelopes, and bound tightening techniques to strengthen the resulting SOCP relaxations. We then propose an SOCP-based spatial branch-and-cut method to obtain the global optimum of AC OPF. Extensive computational experiments show that the proposed algorithm significantly outperforms the state-of-the-art SDP-based OPF solver and on a simple personal computer is able to obtain on average a 0.71% optimality gap in no more than 720 seconds for the most challenging power system instances in the literature

    The State of Play on International Piracy and Anti-Counterfeiting Strategies

    Get PDF
    corecore